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Outline of Talk

BACKGROUND AND CHALLENGES

➢ NOTIONAL MARS REGIONAL NAVIGATION SATELLITE SYSTEM (MRNSS)

SIMULTANEOUS COMMUNICATIONS/TRACKING/NAVIGATION

➢ SIMULTANEOUS UPLINK, AND 2-WAY DOPPLER/RANGING

➢ SIMULTANEOUS DELTA-DOR: SAME BEAM INTERFEROMETRY (SBI)

CAN SIMULTANEOUS COMMUNICATIONS/TRACKING ENABLE NEW MISSION

CONCEPT AND SCIENCE?



Background and Challenges (1)

• Typically one DSN ground station communicates with one spacecraft in deep space

• At Mars when multiple spacecraft are in the beam, one ground station can receive 

multiple downlinks (and one uplink) via MSPA, which is a static form of FDMA

• Traditional deep space tracking techniques include Doppler, ranging, and delta-DOR

• 2-Way Doppler/ranging requires tight coordination between ground and flight 

(Doppler compensation), and one ground station tracking one spacecraft (1-to-1)

• Delta-DOR is 1-way, but requires two ground station tracking one spacecraft (2-to-1)

• When number of missions increase, and for missions with multiple spacecraft, there 

might not be enough DSN antenna assets to meet missions’ communications and 

tracking needs 

• There is a desire to extend the current deep space communications and tracking 

techniques to support multiple spacecraft in a beam to improve the antenna usage 

efficiency
3



Background and Challenges (2) 
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• In 2016 we proposed a low-cost low-maintenance Mars Regional Navigation 
Satellite System (MRNSS) to support human Mars missions [8]:

• Capitalize on the build-up of orbiting and surface infrastructures on Mars during the 
human Mars exploration era [1][2][3]

• Leverage on a new geometric trilateration method that simultaneously performs 
absolute positioning and relative positioning [4][5]

• Introduce the concept of using relative positioning that provides regional navigation 
services in the vicinity of a human Mars landing site (~100 km), thereby relieving the 
stringent requirements on orbit determination (OD) of Mars navigation satellites

• Extend current DSN’s tracking approaches of pairing one or two dedicated ground 
stations to one spacecraft for a period of time to simultaneously tracking of multiple 
Mars orbiters

• Simultaneous Doppler/ranging [6]

• Same Beam Interferometry [7]



Mars Regional Navigation Satellite System (MRNSS) [8]
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Simultaneous Doppler/ranging of orbiters 

within the ground antenna beamwidth [6]

Same Beam Interferometry (SBI) [7]



Orbits of the Notional Mars Navigation Nodes (3-D View)
Utopia Planitia:   182.5

o
 due East, 46.7

o
 due North 

Aerostationary orbiter 1 (Areo45):  162.5
o
 due East 

Aerostationary orbiter 2 (Areo90):  207.5
o
 due East 

Aerosynchronous orbiter (Areo68): 180
o
 due East and 20

o
 inclined 

Deep Space Habitat (Mars48hr):  180
o
 due East, 149.5

o
 inclined 

	

Mars Regional Navigation Satellite System (MRNSS) [8]



Mars Regional Navigation Satellite System (MRNSS)
Preliminary Results on Localization Accuracy 

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	
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0	cm	 0.00	 3273.85	 6547.69	 13095.39	 32738.48	 65476.99	 196431.3	 229169.9	

0.10	cm	 11.27	 3273.70	 6547.54	 13095.23	 32738.32	 65476.82	 196431.1	 229169.7	
0.25	cm	 28.19	 3273.56	 6547.35	 13095.01	 32738.08	 65476.58	 196430.9	 229169.5	

0.50	cm	 56.37	 3273.51	 6547.12	 13094.69	 32737.71	 65476.19	 196430.5	 229169.1	

1.00	cm	 112.74	 3274.15	 6547.03	 13094.24	 32737.04	 65475.45	 196429.7	 229168.3	
2.00	cm	 225.48	 3278.35	 6548.30	 13094.06	 32735.98	 65474.10	 196428.1	 229166.7	

5.00	cm	 563.71	 3313.95	 6563.76	 13099.34	 32735.15	 65471.23	 196423.9	 229162.4	

Table	1.	s3D	Absolute	Localization	Error	standard	deviation	(cm)	of	the	New	Scheme.	PDOP=113.17.	
	
	

Our	Proposed	
Scheme	

GPS	Satellite	Position	Error	
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0	cm	 14.43	 21.57	 35.07	 65.44	 160.06	 319.04	 956.04	 1115.33	
0.10	cm	 21.59	 26.82	 38.47	 67.27	 160.75	 319.32	 956.05	 1115.32	

0.25	cm	 42.77	 45.58	 53.22	 76.58	 164.76	 321.27	 956.58	 1115.75	

0.50	cm	 81.89	 83.33	 87.69	 103.45	 178.67	 328.48	 958.82	 1117.63	
1.00	cm	 161.95	 162.62	 164.84	 173.62	 226.38	 356.41	 968.34	 1125.72	

2.00	cm	 323.00	 323.28	 324.34	 328.78	 359.12	 452.05	 1006.71	 1158.71	

5.00	cm	 806.95	 806.99	 807.34	 808.99	 821.36	 865.36	 1246.30	 1371.59	

Table	2.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	100	km.	Sigma	=	100	m.	Delta	=	100	m.	

	
	

Our	Proposed	

Scheme	

GPS	Satellite	Position	Error	

0m	 0.5m	 1m	 2m	 5m	 10m	 30m	 35m	
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0	cm	 0.14	 1.59	 3.18	 6.35	 15.87	 31.73	 95.20	 111.07	

0.10	cm	 16.03	 16.10	 16.32	 17.20	 22.47	 35.45	 96.42	 112.10	
0.25	cm	 40.08	 40.10	 40.18	 40.53	 42.99	 50.93	 103.02	 117.79	

0.50	cm	 80.15	 80.16	 80.19	 80.36	 81.59	 85.99	 123.99	 136.48	

1.00	cm	 160.31	 160.30	 160.32	 160.39	 160.97	 163.19	 185.83	 194.34	
2.00	cm	 320.62	 320.61	 320.61	 320.63	 320.89	 321.95	 333.77	 338.52	

5.00	cm	 801.54	 801.53	 801.52	 801.52	 801.58	 801.93	 806.47	 808.38	

Table	3.	s3D	Relative	localization	Error	standard	deviation	(cm)	of	the	New	Scheme.		
Distance	between	reference	and	target	=	10	km.	Sigma	=	100	m.	Delta	=	100	m.	

	

200 – 400 folds 

improvement

in RMSE accuracy

Sigma: media delay

Delta: clock bias



Simultaneous 2-Way Communications/Doppler/Ranging: 
System Approach

• Assume X-band, which supports low rate commands/telemetry

• The Mars orbiters all lie within the same beamwidth of a DSN 34-m BWG antenna

• For N orbiters, the downlinks operate in N allocated frequency bands separated by 
N-1 guard bands to prevent interference

• Flight and ground upgrades: 

• The N orbiters time-share a single uplink; commands differentiated by SCID (MUPA) [9]

• The ground “Doppler-compensates” the uplink carrier signal in either way:

• With respective to the Mars center

• With respective to the average (centroid) of Doppler’s of N orbiters

Guard bands must be wide enough to accommodate the residual Doppler.  Preliminary 
simulations: residual Doppler and Doppler rate are bounded  by 45 KHz & 2.6 Hz/s

• Flight radio upgrades:

• A different turn-around-ratio for each spacecraft so the same uplink would be 
coherently “turned-around” to modulate the telemetry and ranging signals on a 
different allocated downlink frequency

• A well-designed tracking loop that can sweep, acquire, and track the unknown 
uplink carrier phase and high residual Doppler frequency

• Ground station uses existing MSPA for telemetry/Doppler/range processing



Simultaneous 2-Way Communications/Doppler/Ranging 
Doppler and Doppler Rate Profiles



Simultaneous 2-Way Communications/Doppler/Ranging: 
Smart PLL Tracking
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Simultaneous Delta-DOR: Theory of Delta-DOR 

Diagrams from “The Evolution of Deep Space

Navigation: 1962-1989,” by Lincoln Wood



Simultaneous Delta-DOR: Same Beam Interferometry (1)

• Same Beam Interferometry (SBI) was proposed by Jim Border et. al. to support the 
tracking of the Magellan and the Pioneer Venus orbiters over 25 years ago [7]

• Like Delta-DOR, SBI uses double-differencing of signal arrival times to achieve 
highly accurate angular distance estimation

– Eliminate clock biases, media delay, instrument delays, etc.  

• Instead of using quasar as reference ( 5- 6 degree away), one can use a nearby 
spacecraft as a reference (less than a milli-degree)

– Ground antennas do not need to point back-and-forth between the quasar and the 
spacecraft, thus increase observation time and simplify operation

– Angular distance between spacecraft is much closer, thus increase accuracy from 10’s 
nano-radian to nano-radians

• Quasar calibrations are needed only at the beginning and at the end of an 
overlapping pass



Simultaneous Delta-DOR: Same Beam Interferometry (2)



Simultaneous Delta-DOR: Same Beam Interferometry (3)



Simultaneous Delta-DOR: Same Beam Interferometry (4)

• SBI is more accurate, and operationally simpler than Delta-DOR

• Since the introduction of SBI, SBI was used or proposed for use in some deep space 
(including lunar) scenarios, e.g. approach/landing, ascent/docking, etc.

Examples:

• Q. Liu, F. Kikuchi, K. Matsumoto, et. al., “Error Analysis of Same-Beam Differential 
VLBI Technique using two SELENE satellites,” Advances in Space Research 40 (2007).  

• M. Chen, Q. Liu, “Study on Differential Phase Delay Closure of Same-Beam VLBI,” 
2nd International Conference on Computer Engineering and Technology, April 2010, 
Chengdu, China

• S. Chen, Q. Liu, “A Study on Accurate Same Beam Interferometry Differential Phase 
Delay Closure,” 12th International Conference on Computer and Information 
Technology, October 2012, Chengdu, China

• T. Martin-Mur, D. Highsmith, “Mars Approach Navigation Using the VLBA,” 
Proceedings of the 21st International Symposium on Space Flight Dynamics, 
Toulouse, France, September 28 – October 2, 2009



Can this Enable New Mission Concept and Science?

• An exercise of a solution looking for the right problems…

• This new “Multiple spacecraft per antenna” approach enables simultaneous 
communications, Doppler, ranging, and “delta-DOR” with different spacecraft, thus 
greatly reduces the burden of ground network.  But can this approach also enable 
new mission concepts and science?  

• Multiple spacecraft (CubeSats?) orbiting a moon or a planet to provide 
simultaneous Doppler measurements

– Spacecraft life-time limitation, e.g. Class-D CubeSats, spacecraft at the harsh radiation 
environment of Jupiter

– Short operation duration and graceful degradation

– Spatial diversity of measurements to study system dynamics – gravity, atmosphere, and 
magnetic field

• Any ideas?
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